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[1] Ammonia (NH3) has significant impacts on biodiversity, eutrophication, and
acidification. Widespread uncertainty in the magnitude and seasonality of NH3 emissions
hinders efforts to address these issues. In this work, we constrain U.S. NH3 sources using
observations from the TES satellite instrument with the GEOS-Chem model and its
adjoint. The inversion framework is first validated using simulated observations. We then
assimilate TES observations for April, July, and October of 2006 through 2009. The
adjoint-based inversion allows emissions to be adjusted heterogeneously; they are found
to increase in California throughout the year, increase in different regions of the West
depending upon season, and exhibit smaller increases and occasional decreases in the
Eastern U.S. Evaluations of the inversion using independent surface measurements show
reduced model underestimates of surface NH3 and wet deposited NHx in April and
October; however, the constrained simulation in July leads to overestimates of these
quantities, while TES observations are still under predicted. Modeled sulfate and nitrate
aerosols concentrations do not change significantly, and persistent nitrate overestimation
is noted, consistent with previous studies. Overall, while satellite-based constraints on
NH3 emissions improve model simulations in several aspects, additional assessment at
higher horizontal resolution of spatial sampling bias, nitric acid formation, and diurnal
variability and bi-directionality of NH3 sources may be necessary to enhance year-round
model performance across the full range of gas and aerosol evaluations.
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1. Introduction
[2] Emissions of ammonia (NH3) from anthropogenic

sources pose several environmental concerns. Ammonia
affects air quality and climate through its role in the
mass, composition, and physical properties of tropospheric
aerosol. Ammonium nitrate and ammonium sulfate make up
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a substantial fraction of atmospheric fine particulate matter
(PM2.5), exposure to which has been statistically associ-
ated with inhibited lung development, cardiovascular dis-
eases, and premature mortality [Pope et al., 2002; Schwartz
et al., 2002; Reiss et al., 2007]. These fine particulates
(PM2.5) also contribute to haze and thus impact visibility.
Further, when deposited in excess, reactive nitrogen, includ-
ing ammonia, can cause detrimental nutrient imbalances to
sensitive ecosystems [Rodhe et al., 2002; Rabalais, 2002].

[3] Despite the recognized importance of NH3 emis-
sions in the U.S. [Aneja et al., 2008], knowledge of
their magnitude is severely limited; NH3 emissions are
primarily from agricultural sources whose strengths are
difficult to characterize. Uncertainty in NH3 undermines
efforts to understand historical and present levels of PM2.5
[Yu et al., 2005; Nowak et al., 2006; Zhang et al., 2008;
Wu et al., 2008; Stephen and Aneja, 2008; Beusen et al.,
2008; Simon et al., 2008; Henze et al., 2009] and hinders
estimates of the response of PM2.5 to control measures
because of the key role that NH3 plays in governing the
balance of inorganic fine particulate species [Dennis et al.,
2008]. Model estimates of inorganic PM2.5 have been com-
pared to surface measurements [Park et al., 2004, 2006;
Liao et al., 2007; Henze et al., 2009; Pye et al., 2009;
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Heald et al., 2012] and measurements from aircraft cam-
paigns [Heald et al., 2005, 2006]; NH3 emissions are fre-
quently indicated to be a likely cause of discrepancies. On
a larger scale, NH3 emissions rates are a critical source
of uncertainty in global budgets of the atmospheric trans-
port and deposition of reactive nitrogen [Sutton et al., 2007;
Galloway et al., 2008; Schlesinger, 2009].

[4] These are several reasons for the persistence of uncer-
tainties in NH3 inventories. Characterizing NH3 sources
from the bottom up requires spatially and temporally
resolved data such as detailed farming practices and
intensity. These data are rarely available nationally as direct
measurements of NH3 emissions at such scales are pro-
hibitive owing to cost. Therefore, top-down approaches
have become an attractive option for providing addi-
tional constraints. While direct observations of gas-phase
NH3 do exist in select locations, observations of other
chemically related species are much more prevalent. Fur-
thermore, NH3 can rapidly partition to form aerosol ammo-
nium (NH+

4) which can limit the utility of gas-phase
observations alone.

[5] Consequently, owing to the paucity of direct obser-
vations of NH3 and the difficulty of constraining the NHx
(=NH3 + NH+

4) system, measurements of species that are
regulated by the amount of available NH3 have been looked
to for constraints on estimates of NH3 emissions. The
National Emissions Inventory (NEI) for NH3 is coarsely
constrained by top-down estimates from the inverse model-
ing studies of Gilliland et al. [2003, 2006]. Measurements
of wet deposited NHx were used as constraints, because
wet deposited NHx estimates depend less than NH3 on
model sensitivity to aerosol partitioning. A drawback to this
approach is the sensitivity to the precipitation fields in the
meteorological re-analysis data driving the chemical trans-
port model and to the parameterization of NHx wet scav-
enging, both of which are aspects that are difficult to model
accurately and hinder the inversion during some seasons.
Taking an alternate approach, Henze et al. [2009] used sur-
face measurements of SO2–

4 and NO–
3 from the IMPROVE

network to constrain the amount of NH3 partitioned into
the aerosol phase as NH+

4 (which is strongly coupled to
SO2–

4 and NO–
3). In this way, aerosol-phase observations

were used to constrain NH3 concentrations and, hence, NH3
emissions. This approach, however, is sensitive to model
bias in HNO3, which may be significant [Zhang et al., 2012;
Heald et al., 2012].

[6] Despite these recent efforts, comparisons of inverse
modeling results to the bottom-up NH3 inventory of Pinder
et al. [2006] show that considerable disagreements remain
in the spatial and seasonal distribution of NH3 emissions
throughout the U.S. [Henze et al., 2009]; at odds are esti-
mates of the relative magnitude of spring versus summer
emissions. A limiting factor in reconciling these differ-
ences is infrequent and sparse in situ observations, even for
the aerosol-phase measurements, and a shortage of direct
constraints on gas-phase NH3. Without understanding the
NHx system as a whole, and without tools to link obser-
vations of these species over the continent to emissions,
studies of NH3 or NH+

4 alone may suffer in terms of util-
ity for constraining emissions inventories at a national scale
[Pinder et al., 2006].

[7] The detection of boundary layer ammonia from space
[Beer et al., 2008; Clarisse et al., 2009, 2010; Shephard
et al., 2011] provides a new opportunity for reducing per-
sistent uncertainties in our understanding of the distribution
and impacts of atmospheric ammonia. Initial comparisons to
global model NH3 distributions indicate that NH3 sources
may be widely underestimated [Clarisse et al., 2009; Shep-
hard et al., 2011]. Pinder et al. [2011] have verified the
utility of such measurements for tracking observed spatial
and temporal trends in surface level NH3 concentrations.
Subsequent studies indicate that underestimates of NH3
sources exist in California and throughout the U.S. in the
spring [Nowak et al., 2012; Walker et al., 2012; Heald et
al., 2012]. Therefore, we consider here how inverse mod-
eling with assimilation of satellite observations of NH3
can be used to further provide constraints on NH3 sources.
Section 2 describes the models and inverse methodology
used in this study. We then present details of the remote
sensing observations (Section 3), followed by inverse mod-
eling tests using simulated observations (Section 4) and real
observations (Section 5). Finally, we evaluate the model
results by comparing them to independent data sets omitted
from the inversion (Section 6) and present our conclusions
(Section 7).

2. Methods
2.1. GEOS-Chem

[8] GEOS-Chem is a chemical transport model driven
with assimilated meteorology from the Goddard Earth
Observing System (GEOS) of the NASA Global Modeling
and Assimilation Office [Bey et al., 2001]. The tropospheric
oxidant chemistry simulation in GEOS-Chem includes a
detailed ozone-NOx-hydrocarbon chemical mechanism of
80 species and over 300 reactions [Bey et al., 2001]. GEOS-
Chem includes an online secondary inorganic aerosol simu-
lation introduced and described in full by Park et al. [2004].
Global anthropogenic sources and natural sources of NH3
are from the 1990 GEIA inventory [Bouwman et al., 1997].
Over the U.S., anthropogenic NH3 emissions are taken from
the 2005 U.S. National Emissions Inventory (NEI), with
seasonality as described in Park et al. [2004], and the CAC
inventory for Canada [van Donkelaar et al., 2008]. Biomass
burning emissions are from van der Werf et al. [2006], and
biofuel emissions are from Yevich and Logan [2003]. The
total U.S. and global NH3 emissions both before and after
the optimization are shown in Table 1.

Table 1. Total U.S. and Global NH3 Emissions Before and
After Optimization.

Simulation U.S. (Gg/month) Global (Tg/month)

April
Initial 234 5.67

Optimized 424 6.03
July

Initial 509 6.37
Optimized 799 6.76

October
Initial 272 5.69

Optimized 362 5.80
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2.2. GEOS-Chem Adjoint Model
[9] The adjoint model is an efficient tool for calculat-

ing the gradient of a scalar model response function with
respect to all model parameters simultaneously. The adjoint
of the GEOS-Chem model was developed specifically for
inverse modeling of precursors of inorganic PM2.5 with
explicit inclusion of gas-phase chemistry, heterogeneous
chemistry, and treatment of the thermodynamic couplings of
the sulfate-ammonium-nitrate-water aerosol system [Henze
et al., 2007, 2009]. As the only adjoint model to explicitly
represent this system, it is uniquely capable of assimilat-
ing speciated measurements of both gaseous and particulate
components using the 4D-Var method [Sandu et al., 2005].
The accuracy of the adjoint model calculations is verified
through extensive comparisons of adjoint to finite difference
sensitivities. In order to maximize points of comparison
between these two approaches, we consider both ensembles
of 1-D models (i.e., no horizontal transport) as well as spot
tests of the full 3-D adjoint model (testing the full adjoint
model for each parameter is prohibitively time consuming,
as it would require separate forward model calculations for
each of the approximately 105 parameters). Figure 1 shows
the results of a week-long test of the sensitivity of sur-
face level NH3 concentrations in each model column to
NH3 emissions in that column. Sensitivities calculated using
the adjoint model are compared with sensitivities calculated
using finite differences. All points lie along or near the 1:1
line, demonstrating the accuracy of the adjoint model.
Further validation of the adjoint model can be found in
previous papers [Henze et al., 2007, 2009, 2012].

2.3. Inverse Modeling
[10] Data assimilation techniques provide a framework

for combining observations and models to form an optimal
estimation of the state of a system, which in this case is
the chemical makeup of the troposphere. To start with, a
range of parameters are constructed using control variables,
� , to adjust elements of the vector of model parameters,
p, via application as scaling factors, p = pae� , where
pa is the prior parameter estimate. The approach we con-
sider iteratively employs the adjoint of an air quality model

1500 1000 500 0

1500

1000

500

0

Finite Difference

A
dj

oi
nt

 r2 =0.997

 m =1.02

Figure 1. Validation of adjoint model sensitivities via
comparison to finite difference (FD) results for week-long
simulations. Shown here are the sensitivities [kg] of surface
level NH3 concentrations with respect to NH3 emissions
in an ensemble of column model simulations. Solid lines
are 1:1, and dashed lines are regressions with given R2 and
slope m.

in a method referred to as 4D-Var, used here for inverse
modeling of emissions. The advantage of this method is
that numerous (O(105)) model parameters can be optimized
simultaneously while still retaining the constraints of the
full forward model physics and chemistry. This approach to
inverse modeling seeks � that minimizes the cost function,
J , given by

J =
1
2

X

c2�
(Hc – (cobs – b))TS–1

obs(Hc – (cobs – b))

+
1
2
� (� – � a)TS–1

a (� – � a)

(1)

where H is the observation operator, � is the regularization
parameter, � a is the prior estimate of the control variables,
Sa and Sobs are error covariance estimates of the control
variables and observations, respectively, � is the domain
over which observations, cobs, and model predictions are
available, and b is a bias correction explained in section 5.
Overall, the cost function is a specific model response func-
tional, the minimum value of which balances the objectives
of improving model performance while ensuring the model
itself remains within a reasonable range (as dictated by S–1

a )
of the initial model. Gradients of the cost function with
respect to the scaling factors calculated with the adjoint
model, r�J , are supplied to an optimization routine (the
quasi-Newton L-BFGS-B optimization routine) [Byrd et al.,
1995; Zhu et al., 1994], and the minimum of the cost func-
tion is sought iteratively. At each iteration, improved esti-
mates of the model parameters are updated and the forward
model solution is recalculated.

3. Observations
3.1. Remotely Sensed NH3 Observations From TES

[11] The high spectral resolution and good signal-to-noise
ratio of the TES instrument [Shephard et al., 2008] enabled
the first detection of tropospheric ammonia from space
with measurements over Southern California and China
[Beer et al., 2008]. TES is an infrared Fourier transform
spectrometer with spectral resolution of 0.06 cm–1 aboard
the NASA Aura satellite, launched 15 July 2004, with a local
overpass time of 13:30 and 01:30 [Schoeberl et al., 2006].
TES global survey observations repeat with a 16 day cycle
and have a nadir footprint of 5 km � 8 km, for example,
that leads to about �180 daytime retrievals a month over
North America after cloud screening (optical depths < 1.0)
and applying the TES retrieval quality control flags.

[12] Comparison of model estimates to satellite observa-
tions is done via application of the following formula for the
TES observational operator, H:

Hc = ca + A(Mc – ca) (2)

where c is the model estimated NH3 profile, M is a matrix
that maps these values to the retrieval units and vertical
levels, A is the averaging kernel, and ca is the a priori NH3
profile used for the retrieval [Shephard et al., 2011]. By
comparing TES NH3 profiles to mapped model estimates,
Hc, rather than the native model NH3 profile, c, the con-
tribution of error in ca to the measurement error, Sobs, is
minimized [Rodgers, 2000].
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[13] For the sake of 2-D visualization, the Representa-
tive Volume Mixing Ratio (RVMR) metric [Payne et al.,
2009; Shephard et al., 2011] is used to provide a means
of comparing TES profiles to model estimates in a manner
that accounts for heterogeneity in the instrument’s sensi-
tivity to NH3. RVMR is the average volume mixing ratio
within the boundary layer, weighted by a function derived
from the retrieval’s averaging kernel. This represents a TES
sensitivity weighted boundary layer averaged value with the
influence of a priori reduced as much as possible [Shephard
et al., 2011]. We calculate RVMR only for retrievals that
have signal to noise greater than 1 and high thermal con-
trast. The RVMR is also calculated for the model in those
locations which have valid TES retrievals.

3.2. Surface Measurements
[14] In this study, model estimates are evaluated using

surface observations of NH3, sulfate, nitrate, ammonium,
and wet deposited NHx from several monitoring networks
throughout the U.S. Surface NH3 observations are from the
National Atmospheric Deposition Program (NADP) Ammo-
nia Monitoring Network (AMoN), which is comprised of
triplicate passive ammonia monitoring samplers located at
21 sites across the U.S. with a 2 week long sample accumu-
lation [Puchalski et al., 2011]. All 2 week long observations
in each month are averaged to give monthly concentration.
The locations of these 21 monitoring stations are shown in
Figure 2. Observations from each site are compared with
modeled concentrations during the November 2007 through
June 2010 period.

[15] Hourly surface NH3 observations in July of 2008 are
from the Southeastern Aerosol Research and Characteriza-
tion (SEARCH) network [Hansen et al., 2003], which has
monitoring stations throughout the Southeast U.S. Different
sample frequencies (e.g., daily, 3 day, 6 day, 1 min, 5 min,
hourly) are available at different monitoring station. Five
minute long observations are available in three stations: Oak
Grove, MS; Jefferson Street, GA; and Yorkville, GA. The
hourly NH3 concentration used here is the average of all
5 min long observations of these three stations in each hour.

[16] Wet deposition observations are taken from the
NADP National Trends Network (NTN) (http://nadp.sws.
uiuc.edu/NADP), which are predominantly located away
from urban areas and point sources of pollution. NTN has
more than 200 sites with week-long sample accumulation.

Figure 2. Monitoring site locations for the Ammonia Mon-
itoring Network (AMoN).

[17] Model estimates of sulfate and nitrate aerosol are
compared to observations from the Interagency Monitoring
of Protected Visual Environments (IMPROVE) network for
the year 2008 [Malm et al., 2004]. The IMPROVE network
collects PM2.5 particles on Teflon, nylon, and quartz filters
using a modular, cyclone-based sampler with critical orifice
flow control. Sulfate and nitrate aerosols are collected on
nylon filters, which are sampled over 24 h every third day.

4. Inversions With Pseudo Data
[18] We first assess the capabilities and limitations of the

GEOS-Chem inverse modeling setup in idealized control
conditions by designing inverse problems with known solu-
tions. A common framework for testing inverse modeling
is the so-called twin experiment in which model simula-
tions are used to generate pseudo observations [Talagrand
and P. Courtier, 2008]. In our setup, pseudo observations
are generated through application of the TES NH3 retrieval
algorithm [Shephard et al., 2011] to a simulated atmosphere
from GEOS-Chem (i.e., radiative transfer calculations are
performed to generate pseudo spectra with nominal TES
instrument noise, and pseudo NH3 retrievals produced from
these). The standard model emissions used during this simu-
lation are designated as the true emissions. Sampling times,
locations, and error estimates reflect those of actual TES
observations, although retrieval bias (b) is not included in
these tests. For these tests, 87 pseudo TES observations are
used from 14 to 19 July 2005, along roughly a dozen global
survey transects crossing the midwestern U.S.

[19] To test the inverse model, NH3 emissions parameters
are initialized to values different from the true emissions.
In the first test, initial model emissions are half of the true
value. Figure 3(a) shows these values in black along with
linear line slope m and R2. After optimization, the recovered
emissions are unbiased and have a visible variance around
the true emissions of�30%, as shown in blue in Figure 3(a).
In a second test using the same pseudo observations, the
model emissions are initially biased high by a factor of 1.8
(Figure 3(b)). The emissions recovered after optimization
have a 20% high bias and again a 30% variance about the
true values. While the variance of the recovered emissions
is similar in both tests, the inversion starting with emissions
that are initially too high is less successful.

[20] To further investigate the reasons for this asymme-
try and the variance of the optimized emissions, additional
tests are performed to separate the possible impacts of inver-
sion error, retrieval bias, and measurement error. In each of
the following tests, the true emissions are used to initialize
the inversion. The first test uses the same pseudo observa-
tions as previously generated. This test again results in a
high bias. As the same model state is used to generate the
pseudo observations as was used to initialize the inversion,
this bias can be attributed to a high bias in the retrieval
itself. Retrieval bias, as explained further in Shephard et al.
[2011], is owing to the fact that the retrieval always selects
a moderate or polluted profile as an initial guess in order
to avoid the null space of the radiative transfer operator. As
the optimal estimation algorithm iterates towards a solution,
the process may halt when values reach TES’s detection
threshold, resulting in a high bias. To test this, the retrieval
algorithm is modified to use only a moderate profile as an
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Figure 3. Emissions before (initial) and after (optimized)
inversions using TES pseudo observations. To test the
inverse model, NH3 emissions were initialized to values dif-
ferent than the true emissions. (a) The initial emissions are
half of the true values. (b) The initial emissions are 1.8
times the true values. The black points are the total ini-
tial emissions in each grid cell, and the blue points are the
optimized emissions (both in kg/box).

initial guess. Pseudo observations generated using these pro-
files lead to slightly less high bias in the inversion, at the cost
of increased variance; see Figure 4(b). As the magnitude of
the final bias in tests whose results shown in Figure 4(a)
and 4(b) are similar to those in the pseudo inversions, it
seems that the retrieval bias explains the bias exhibited in the
pseudo inversions, and thus, the entire process of inverting
for NH3 emissions is not appreciably intrinsically biased.
To isolate the impact of measurement noise, the model pro-
files from the true model are ascribed realistic measurement
error and then assimilated. These profiles, unlike the pre-
vious tests, correspond directly to the true model and are
not retrieved profiles from the retrieval process. The impact
of this measurement noise is only a slight adjustment in
the emissions. Thus, the variance exhibited in the pseudo
inversions is intrinsic to the inversion process itself and
would occur even if observations were perfect. This happens
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Figure 4. Tests for the possible impacts of inversion error,
retrieval bias, and measurement error: (a) retrieval algo-
rithm with a polluted profile as an initial guess; (b) modified
retrieval algorithm with a moderate profile as the initial
guess; (c) model profiles from the true model were ascribed
error of the same size as the measurement error. The black
points are the total initial emissions in each grid cell, and the
blue points are the optimized emissions (both in kg/box).
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because there are variations in emissions that lie in the null
space of the forward model. In other words, having some
emissions too high and some emissions too low can result in
indistinguishable (to TES) distributions of NH3. Overall, the
pseudo observation tests lead us to conclude that (1) mea-
surement noise alone will not lead to unstable inversions,
(2) emissions that are underestimated can likely be recov-
ered, (3) emissions that are overestimated will be decreased,
though this is countered by bias in the retrievals leading to
overestimate of emissions in conditions where the model
emissions are initially too high, and (4) that many more iter-
ations and observations would be necessary to reduce the
variance of the emissions estimates from the truth, which
will be at best �30%. While this variance is substantial, this
is a significant improvement over initial errors of �100%.
Contrast between points (2) and (3) is likely owing to the
larger magnitude of the bias for retrievals with larger values
(see Supporting Information Figure S1).

5. TES Assimilation
[21] We next proceed to constrain U.S. NH3 sources

using real observations. TES observations are compared
to model estimates from a 2008 GEOS-Chem global 2° �
2.5° simulation using equation (2) to assimilate individ-
ual observations. The lifetime of NH3 is short compared
to the residence time of an air mass in one grid cell of
our model. As single retrievals may reflect strong sub-grid
gradients in NH3 concentration, we consider satellite obser-
vations during four years, 2006–2009, to provide enhanced
spatial data coverage for comparison with the 2008 model
simulations. Inter-annual comparisons of monthly AMoN
NH3 data indicate no substantial trends in this time
period (Figure S3).

[22] Thousands of TES retrievals are available for the
assimilation, but not all of the TES retrievals are usable.
The satellite cannot always detect NH3 for several reasons,
such as the presence of clouds, low NH3 concentrations
(low signal-to-noise ratio), and poor thermal contrast
between the earth and atmosphere. Thus, quality and diag-
nostic flags are defined to classify and filter the retrievals,
keeping only those that have degree of freedom for signal
(DOFS) greater than 0.1 or DOFS less than 0.1 but with
high (absolute value greater than 7K) thermal contrast. We
use the retrievals from daytime only as the retrievals at night
are currently being further validated. The TES retrievals are
corrected by subtracting mean biases. These biases are gen-
erated from the discrepancy between TES retrievals and
true profiles [Shephard et al., 2011], and the mean biases
are calculated according to the type of the a priori profile
(Figure S1). There is separate bias associated with each
of the three types of a priori profiles used in the retrieval
algorithm. For example, we apply the “unpolluted” bias cor-
rection to all observations in which the unpolluted a priori
model profile was used in the retrieval algorithm.

[23] A key aspect of inverse modeling is regularization
through inclusion of the penalty, or background, term in the
cost function, specified through the prior error covariance
matrix, Sa, and a regularization parameter, � . In the absence
of rigorous statistical information on the error covariances
of the emissions, we assume the errors are uncorrelated and
use an L-curve selection criteria [Hansen, 1998] (Figure S2)

to regularize our solution. Still, the relative error for each
species is specified as follows. Given the large discrepan-
cies previously noted for NH3 sources [Henze et al., 2009],
uncertainties of NH3 are taken to be 100% of the maximum
NH3 emissions across the globe. Based on work by other
researchers, we assume that the uncertainties in SO2
[Lee et al., 2011] and NOx [e.g., Russell et al., 2012] are
smaller, conservatively 20% and 50% of the maximum (the
impact of these assumed values is assessed in Section 5
and Table 2). With these values, we select the regularization
parameter (� ) to be 124 for April, 100 for July, and 50
for October.

[24] TES NH3 observations are assimilated using the
GEOS-Chem adjoint-based inversion. The domain-wide
average model NH3 profiles before and after the inversion
are shown along with the average TES profile in Figure 5.
The model NH3 profiles are predominately lower than the
TES observations in the prior simulation and have shifted
towards the TES profile in the optimized simulation. This
leads to reductions of the cost function of 66%, 42%, and
57%, for April, July, and October, respectively. The opti-
mization is considered to have converged when consecutive
iterations decrease the cost function by less than 2%. An
example of the minimization is provided in Figure S4. While
we recognize that further iterations are possible, for practical
purposes (each iteration requiring �10 h to compute), this
was deemed a sufficient convergence criteria. Limited tests
indicate that additional iterations did not drastically alter
the results.

[25] The total initial and optimized ammonia emissions
are shown in Figure 6. The optimized emissions generally
increase over the U.S., with adjustments that are season-
ally and spatially heterogeneous. There are large increases
in Southern California in all 3 months. Other large increases
are located in the central and western U.S., as well as parts
of Mexico and Cuba. We do not have much information
about NH3 in Mexico and Cuba due to lack of ground-
based measurement records there, but large (e.g., 15 ppb)
NH3 RVMR values are observed in April whereas the cor-
responding GEOS-Chem model estimates using the initial
emissions are very small (e.g., 1.37 ppb). As a result of the
inversion, emissions are increased in such areas by up to a
factor of 9. Changes to emissions in the East are generally
much smaller; emissions in the Atlantic regional are gener-
ally unchanged in April and October, while they are higher
in the North East in July, and even slightly lower in a few
locations in the South.

[26] Figure 7 shows the comparison of NH3 RVMR from
TES and GEOS-Chem before and after the assimilation.
There are between 500 and 700 RVMR values in each month
including values from 4 years. A linear fit of the model val-
ues to the observations is performed in each month, before
and after optimization. The slope of this line increases in
each month which indicates that most of the RVMR values
from GEOS-Chem increase after the optimization. How-
ever, the modeled NH3 RVMRs at low values change only
slightly after the optimization in all 3 months. We note
however that these differences in RVMR do not reflect
observation bias or uncertainty, which contribute to the cost
function. In order to show the locations which have signif-
icant changes in RVMR, we consider spatial plots of the
difference between the TES and GEOS-Chem RVMR before
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Table 2. The Effects of A Priori Error Emissions (Sa) on the Optimized Emissions of Different
Species. Total Emissions Changes in the U.S. for NH3, NOx, and SO2 When Using Different Values

for the Diagonal of S
1
2a in the Optimization. E0 is the Initial Emissions.

Uncertainties, S
1
2a /max(E0) Total emissions changes

Month SO2 NOx NH3 �SO2 �NOx �NH3

April 20% 50% 100% –11.9% –14.69% 112.99%
50% 50% 50% –11.58% –15.39% 99.95%

July 20% 50% 100% –8.35% –4.24% 54.80%
50% 50% 50% –10.23% –4.58% 53.26%

October 20% 50% 100% –3.56% –1.99% 36.07%
50% 50% 50% –3.64% –2.41% 35.16%

0 0.5 1 1.5 2 2.5

0

100

200

300

400

500

600

700

800

900

1000

P
re

ss
ur

e,
 m

ba
r

0 0

100

200

300

400

500

600

700

800

900

1000

P
re

ss
ur

e,
 m

ba
r

100

200

300

400

500

600

700

800

900

P
re

ss
ur

e,
 m

ba
r

TES retrieval
GC initial
GC optimized

0 1 2 3 4

TES retrieval
GC initial
GC optimized

0 0.5 1 1.5 2

[NH
3
], ppbv [NH

3
], ppbv [NH

3
], ppbv

TES retrieval
GC initial
GC optimized

April July October 

Figure 5. The average of TES retrieval profiles used in the assimilation (solid red line). The average
model NH3 profiles before (blue dotted line) and after (blue dashed line) the assimilation. The TES
observation operator is applied to the model profiles.
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Figure 6. NH3 emissions from GEOS-Chem before and after the assimilation.

and after the assimilation for each month (Figure 8). Ini-
tially, the model RVMRs are generally less than the TES

RVMRs, as indicated by the blue points in the map. After
the optimization, model RVMRs increase in many places.
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Figure 7. Comparison of NH3 Representative Volume
Mixing Ratio (RVMR) from TES and GEOS-Chem before
and after the assimilation.

Some of the model RVMRs are larger than the TES RVMRs,
as indicated by the red points in the map, and the overall
model bias relative to TES is reduced. The discrepancies
between TES RVMRs and model RVMRs change from neg-
ative to positive in Southern California and Central U.S.
in all 3 months, consistent with the spatial plots showing
large increases of ammonia emissions in these locations
(Figure 6).

[27] We also assess the sensitivity of these results to the
assumed a priori emissions errors, Sa. Table 2 shows the
effects of varying a priori errors on the total optimized emis-
sions of different species. We assume the error for NH3,

S
1
2a (NH3), to be 50% of the maximum a priori emission for

all species. Generally, the results of the inversion are not
very different in terms of total emission changes for each
species from the base case inversion. However, absolute
changes in total emissions of SO2 and NOx increase slightly
as their uncertainties increase relative to those of NH3,
while changes in NH3 total emissions decrease as uncer-
tainty of NH3 decreases. Differences between the emissions
in Table 2 compared to Table 1 stem from the use of an ear-
lier version of the model and TES data set for performing
the sensitivity calculations in Table 2; the overall findings
are likely still applicable.

6. Posterior Model Evaluation Against
Independent Data

[28] In the following sections, we compare output from
model simulations using the optimized emissions to inde-
pendent data sets not used during the inversion. This serves
as an important assessment of the robustness of the inverse
model solution. Even when the inverse model has con-
verged to a solution in which the model prediction error
is minimized and the emissions are consistent with the
a priori error assumptions, the validity of the emissions
constraints beyond this particular model framework is not
guaranteed. The basic 4D-Var approach does not account for
bias in the forward chemical transport model, which may
significantly impact the top-down emissions constraints.
Evaluating against independent data sets is thus critical.

6.1. AMoN and SEARCH
[29] We first consider a comparison of the posterior model

results to AMoN NH3 observations (Figure 9). Initially, the
model broadly underestimates AMoN values. After opti-
mization, the NH3 concentrations increase in each month.
The R2 value increases by 22.4% in April, 29.9% in July,
and 27.2% in October. The slope increases by 353.3% in
April, 96.1% in July, and 77.1% in October. However, while
the root mean square error (RMSE) decreases by 13% in
April and 9.5% in October, it increases by 77.6% in July.
The normalized mean bias (NMB) after the optimization
decreases from –0.678 to –0.069 in April and increases from
–0.045 and –0.138 to 0.659 and 0.166 in July and October,
respectively. Overall, the model does a better job of captur-
ing the range and variability of NH3 at AMoN sites in April
and October, while in July, the model estimates are biased
high.

[30] TES has a detection limit of about 1 ppb and a pos-
itive bias of about 0.5 ppb [Shephard et al., 2011]. Model
values that are below 1 ppb do not change significantly after
the optimization in all 3 months (Figure 9). The bias shown
in Figure 9 for July is much higher than 0.5 ppb. One pos-
sible reason may be sampling bias due to the TES level
of detectability and spatial sampling differences between
the TES footprint and the model grid. This is assessed by
analyzing NH3 simulations from high-resolution (12 km �
12 km) Community Multi-scale Air Quality (CMAQ) model
simulations. Surface level NH3 concentrations throughout
the U.S. are compared to concentrations from locations cor-
responding to successful TES retrievals. The mean surface
NH3 concentration of CMAQ at locations which have suc-
cessful TES retrievals is about 30% larger than the mean
value of that for the whole U.S. This comparison is facil-
itated by the fact that the TES footprint (5 km � 8 km)
and CMAQ grid cells are similar in size. As shown in
Figure 9, changes in large concentrations drive the optimiza-
tion. A lack of TES observations constraining low values
may allow for initial model values that already overesti-
mate low NH3 concentrations to become even higher in the
optimized model, because high TES values, many of which
are larger than the initial model estimate, will dominate the
cost function. In future work, re-sampling the TES retrievals
may be one way to decrease the sampling bias. Increasing
the model resolution may also improve our ability to model
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Figure 8. Difference of NH3 Representative Volume Mixing Ratio (RVMR) between TES and GEOS-
Chem before and after the assimilation. The left column shows GEOS-Chem initial RVMR-TES RVMR;
the right column shows GEOS-Chem optimized RVMR-TES RVMR.

localized peak NH3 concentrations measured by TES and to
match observations from AMoN.

[31] Lastly, Jeong et al. [2013] also compares observa-
tions from TES and in situ NH3 measurements to model
simulations, noting similar cases where in situ measure-
ments are lower than the model (CMAQ) simulations,
but the TES observations are higher. It is suggested that
treatment of the diurnal variability of summertime NH3
emissions from livestock may play a role in this discrep-
ancy. Comparison of GEOS-Chem hourly NH3 concentra-
tions to data from the SEARCH network in July paints a
similar picture (Figure 10): the constant hourly NH3 emis-
sions in GEOS-Chem lead to NH3 concentrations that are
overestimated at night and thus also in the monthly average
when compared to AMoN. Following Jeong et al. [2013],
we perform a sensitivity calculation wherein NH3 emis-
sions from livestock are increased by 90% during the day
and reduced by 90% at night. The impact is to decrease
the monthly average surface concentrations by several ppb,
while increasing daytime boundary layer NH3 concentra-
tions enough to reduce the cost function by 25%. In addition,
Jeong et al. [2013] also show that bi-directional exchange
of NH3 in July leads to increased and decreased emissions
in different regions (10% overall increase), yet NH3 con-
centrations increase everywhere. This is in contrast to April

and October, where emissions and concentrations decrease.
Physical mechanisms have thus been identified by which
mid-day model profiles of NH3 may be increased without
large increases in emissions. Further consideration of mech-
anistic, process-based treatment of NH3 sources in global
models is therefore warranted.

6.2. NTN
[32] As an additional check of the broad NHx budget,

we consider the NHx wet deposition as recorded by NTN
(NADP) sites. To make this comparison, we consider that
simulated precipitation is a critical driver in the performance
of the GEOS-Chem-simulated wet deposition estimates, as
biases in the model estimated precipitation can lead to biases
in the GEOS-Chem model estimates. We therefore adjust
the modeled wet deposition diagnostic to account for differ-
ences in the modeled and observed precipitation by linearly
scaling the model estimated wet deposition by the ratio of
the observed to estimated precipitation.

[33] Figure 11 shows the comparison of modeled wet
deposition with the NTN observations. Generally, the inver-
sion increases wet deposition during all 3 months. Also,
the square of the correlation coefficient (R2) improves in
each month: 11.4% in April, 14.1% in July, and 10.3% in
October. In April and October, optimized values compare
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Figure 9. Comparison of GEOS-Chem NH3 concentrations with observations from AMoN sites before
and after the assimilation. The square of the correlation coefficient (R2), root mean square error (RMSE),
and normalized mean bias (NMB) are shown. Black solid lines are regressions. Gray dashed lines are 1:1.

better with the NTN observations. In contrast, the slope of
the linear regression line increases from 1.08 to 1.59 in July.
This is consistent with the high bias of the inversion relative
to the AMoN surface observations of NH3 in July. Compar-
isons between GEOS-Chem and NTN observations are also
shown in Zhang et al. [2012]. They compare the NH3 wet
deposition from GEOS-Chem at the 0.5° � 0.67° resolution
with NTN observations from 2006. Differences between
this study and the present work are the model resolution,
data filtering, the number of months per season included
in the comparisons (one versus three), and the emission
inventories in Zhang et al., [2012], which include domain-
wide seasonal adjustments based on in situ observations to
minimize seasonal bias.

6.3. IMPROVE
[34] For an additional evaluation, we also compare

the assimilated results with aerosol observations from
IMPROVE in 2008. Figure 12 shows that model opti-
mization slightly decreases the sulfate concentrations
and increases the nitrate concentrations, which facilitates
increases in NH3 concentrations to match TES observations.

Still, the changes are small, and the sulfate concentra-
tion from the model has a reasonable correlation with the
IMPROVE observation before and after optimization in
each month. Note that the outlier in October that has a large
observed value but a nearly zero model value is located
in Hawaii. The model does not represent this high value
owing to the proximity of the observation to the local
volcanic source.

[35] Optimized NH3 emissions do not help the compari-
son of simulated nitrate to IMPROVE observations, which
initially are over predicted. The balance of sulfate and nitrate
from IMPROVE sites alone implies that NH3 sources are
too high [Henze et al., 2009]. However, model NH3 in the
present work increases in order to improve agreement with
TES NH3, leading to more nitrate formation, and the nitrate
bias becomes even higher compared to IMPROVE. It is thus
a challenge to resolve the underestimates of boundary layer
NH3 with the overestimates of nitrate. HNO3 formation in
the model is perhaps excessive [Zhang et al., 2012], and
overly shallow nighttime boundary layers may contribute to
enhanced nitrate [Heald et al., 2012]. We perform additional
sensitivity studies, reducing the heterogeneous uptake coef-
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Figure 12. Comparison of GEOS-Chem SO4 and NO3 concentrations with observations from
IMPROVE sites before and after the assimilation.

ficient for N2O5 hydrolysis by an order of magnitude and
adjusting the boundary layer height following Heald et al.
[2012]. While such changes do impact the nitrate simula-
tion, the nitrate high bias persists, and the comparison of
the base model NH3 to the AMoN and TES observations
was not notably affected. Enforcing a diurnal variation in
NH3 livestock emissions decreased average surface nitrate
concentrations by up to a �g/m3, as the GEOS-Chem over-
estimates of nighttime NH3 likely contributed to excessive
partitioning of HNO3 at night. Thus, to achieve closure rel-
ative to all data sets, it is evident that assessment of model
error beyond NH3 sources, in terms of scavenging efficien-
cies, deposition, diurnal variability, and further investigation
of HNO3 production is required.

7. Conclusions
[36] Here we have considered the potential for space-

based observations of NH3 to constrain monthly average
emissions. Initial tests using pseudo observations show that
under ideal conditions (i.e., a perfect model) using 2 weeks
worth of TES data, 70% of the variance of the emissions can
be constrained in terms of total magnitude. We then proceed
to assimilate TES observations in April, July, and October
for multiple years. We present a range of constrained pre-
diction results and evaluate them with independent data
sets. Generally, model optimization increases NH3 concen-
trations and NHx wet deposition. Overall, the model does a
better job of capturing the range and variability of NH3 at
AMoN sites in April and October, while in July, the model
estimates are consistently biased high. Compared to the wet
deposition observations of NTN, optimization decreases the

normalized mean bias (NMB) in April, enhances the NMB
in July and October, but overall leads to increased correla-
tion of modeled and observed values. Modeled SO2–

4 aerosol
concentrations slightly decrease, and NO–

3 aerosols concen-
trations increase, which increases the bias compared to the
IMPROVE observations.

[37] Overall, remote sensing constraints indicate that the
initial NH3 emissions inventory appears to be broadly
underestimated in several areas throughout the U.S., par-
ticularly in the West. This is consistent with recent works
regarding NH3 levels in California throughout the year
[Walker et al., 2012] and the U.S. in the spring [Heald et al.,
2012], as well as in situ measurements in April and October.
Still, the absolute extent of the emissions underestimation in
these seasons is still in question, as the precise accuracy of
the satellite observations is difficult to specify, model reso-
lution is not matched to the satellite resolution, and model
processes could have error contributing to uncertainty in the
inversion. A greater fraction of peak values are included in
the assimilation owing to satellite detection limits, leading
to a sampling bias that may cause the inverse model to over-
estimate emissions in July, as indicated by high biases in the
optimized model simulations of surface level NH3 concen-
trations and NHx deposition. Future work will apply a newly
developed higher resolution (e.g., 0.5° � 0.67°) version of
the inverse model to further investigate this issue.

[38] Additional sensitivity studies, comparisons to hourly
observations from SEARCH, and the recent regional mod-
eling work of Jeong et al. [2013] indicate that diurnal
variability of livestock emissions and bi-directional flux
from fertilizer sources may play important roles in resolving
discrepancies between average surface level concentrations
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and mid-day profiles of NH3 and may also impact the high
bias of nitrate in GEOS-Chem [Heald et al., 2012]. Fur-
ther assessment of mechanistic, process-based treatment of
NH3 sources in global models is thus needed. Additional
measurements, from either expanded in situ monitoring net-
works or geostationary remote sensing instruments, would
greatly serve this need.
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